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ABSTRACT

Ion acoustic phenomena are studied in a cylindrical geometry

for two distinct cases. A large amplitude compressive pulse is

seen to evolve into solitons. The evolution of these solitons

and their dependence on initial conditions show a similarity to

previous work on one dimensional solitons. Dimensionless scaling

arguments are used to distinguish between the two cases. In the

presence of a steady state uniform cylindrical beam, approximated

by a ring in Vr, V , an ion-ion beam instability is observed. This

instability exists for a limited range of beam velocities and shows

a marked similarity to the strictly one dimensional ion-ion beam

instability. Solution of the appropriate dispersion relation

shows agreement with the observed phenomenon.
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I. INTRODUCTION

The investigation of ion acoustic waves has been the sub-

ject of extensive study in recent years. With the invention of

the double plasma (DP) device at UCLA [Taylor 1969A; Taylor 1972]

new and wider areas of investigation were opened. Large ampli-

tude planar waves can be efficiently launched in a plasma with

variable electron to ion temperature ratio [Mackenzie 1971].

Steady state large diameter ion beams can also be injected into

the plasma.

The initial work with a DP device was an investigation of

collisionless electrostatic shocks [Taylor 1969B]. Ramp

excitations of variable height and rise time were applied to the

plasma. For large amplitude excitations ( n 4 .5) the initial
n

ramp was observed to steepen and form a collisionless electro-

static shock. A small fraction of ions were reflected by the

potential jump of the shock forming a double humped ion distri-

bution in front of the shock.

These reflected ions represent a localized ion beam in the

plasma. Stern and Decker [1971] report observation of an instability

due to these reflected ions. A velocity gradient was established

by injecting an ion beam from the target into the driver chamber.
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When a large amplitude pulse is launched into the target chamber

the reflected ions travel balistically from the point of reflection

until the velocity gradient brings the precursors into resonance

with the local ion acoustic velocity. A resonant transfer of

energy from precursors to noise fluctuations results in the growth

of the noise until it engulfs and destroys the original wave.

A similar study of turbulence associated with precursors

of ion acoustic shocks by Means et al. [1973] attributes the observed

turbulence, in their case, to the three dimensional nature of the

instability. With no velocity gradient present there are modes

oblique to the direction of the wave front which resonate with the

reflected precursors. It is these off axis modes that result in

the turbulence. Three qualitatively different effects were observed.

For high electron to ion temperature ratios (T /T.) and small ampli-
e 1

tude, laminar shocks with no turbulence were observed. For moderate

T /T. ratios or amplitude turbulence, restricted to the region occupied
e i

by the precursor ions was observed. For low T e / Ti or large ampli-

tude, the turbulence engulfed the shock and destroyed its structure.

An investigation of the heating of an ion beam was made by

Taylor and Coronitti [1972]. A uniform planar ion beam with velo-

city greater than twice the ion acoustic velocity was injected

from the driver chamber into the target chamber. The ion-ion

beam instability excited off-axis modes that propagated oblique



to the beam direction. The ion beam is seen to be heated until it

forms a quasilinear plateau on the background ion distribution.

The evolution of non-linear compressive pulses that are governed

by the Korteweg-de Vries equation was made possible by the DP

device. Ikezi, Taylor and Baker [1970] investigated the properties

of single solitons. The width, amplitude and velocity were 'shown

to be consistent with the definition of solitons. The interaction

of two solitons was also studied. Hershkowitz, Romesser and

Montgomery [1972] compared the evolution of an initial condition

into multiple solitons with the analytic theory. A similar report

has been made by Ikezi [1973] in which both pulse and continuous

wave initial conditions are treated.

The objective of the experiments reported in this disser-

tation was to investigate in a cylindrical geometry two kinds of

ion acoustic phenomena. A study of the evolution of weakly non-

linear compressive pulses in a cylindrical geometry was made to

determine if solitons or soliton-like objects existed. Once their

existence was determined a detailed comparison between planar and

cylindrical solitons became possible. The second area of investi-

gation is the ion-ion beam instability in a cylindrical geometry.

For steady state radially ingoing beams an ion-ion beam instability

is expected to occur. The dependence of the instability on beam

velocity and beam density has been investigated and compared with

the analytic theory for a linear instability.
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II. EXPERIMENTAL APPARATUS

The experiments reported here were performed in the University

of Iowa double plasma device. A modification was made to allow oper-

ation in a cylindrical geometry. The University of Iowa double

plasma device (Fig. 1) consists of two aluminum cylinders (length

37 cm; diameter 38 cm) placed end to end but separated by an insu-

lating ring. In each chamber 36 filaments are located symmetrically

near the outside wall. Two cylindrical fine mesh screen (200 lines/

inch) of radii 10 and 11 cm and length " 30 cm are mounted concen-

trically in one end of the device. Electrons emitted from the filaments

which are biased at -40 volts with respect to the wall produce the plasma.

The outer cylindrical screen is allowed to float causing it to charge

up negatively preventing the flow of electrons between the inner and

outer plasma. The inner cylindrical screen is grounded to help de-

termine the plasma potential of the interior plasma. A shield was

used to prevent line of sight paths between the outer (driver) plasma

and the inner (target) plasma. Typical operating parameters are

ion density (n ) 109 cm- , electron temperature (T ) 1 - 3.0 eV,O e

and an ion temperature (Ti) < .2 eV [Hudis et al. 1968] at a pressure

of 3 10-4 Torr.
of 3 x 10 Torr.



Cooling coils are wrapped around the chamber and attached

using Stycast 2850 FT epoxy. The system is evacuated using a 4 inch

oil diffusion pump to an ultimate base pressure of - 5 X 10 - 7 torr

after pumping down. This assures us of negligible impurity con-

centration if data is not taken until the ultimate base pressure

is reached.

There are two modes of operation for the DP device. If the

potential of the driver chamber wall is raised with respect to the

target chamber wall (ground) a uniform symmetric cylindrical beam

is launched. The beam energy is adjustable) being a function of the

applied potential difference. The beam is detected using a gridded

energy analyzer as shown in Fig. 2. The front screen (200 lines/inch)

is allowed to float and prevents electrons from entering the analyzer.

The collector plate is biased at -67.5 volts to collect ion current.

The voltage to the center grid is ramped with a sawtooth voltage.

Only those particles with sufficient directed momentum to overcome

the barrier represented by the second grid can be collected. This

particular design gives directional resolution as will be seen later.

From geometrical considerations the analyzer can detect particles

in a cone of half angle 16 . The fields generated in the plasma

will tend to broaden this. An energy resolution of .1-.2 eV is

possible but deterioration of resolution occurs with use and exposure

to the plasma. Figure 3 shows typical energy analyzer traces for

Emerson and Cumings, Inc. Canton, Mass.



several beam energies. The signal represents the flux of particles

with energy greater than a plotted versus s. If we then differen-

tiate with respect to time (assuming Is is linear with time) we

recover the velocity distribution function f(v) plotted versus s5

Figure 4 shows a differentiated energy analyzer trace. The temper-

ature of the background ions is seen to be approximately .2 eV and

a well defined beam is seen with energy 3.2 eV. The width of the

beam appears slightly wider than that of the background ions. To

determine the temperature, however, we must replot the data as f(v) versus

v. Figure 5 shows the effect of doing this. The beam as expected

will be much colder after being accelerated. To find the beam

density we must look at the data that has been replotted as f(v) vs v.

Measurement of electron density is made using a Langmuir

probe. To determine the density a large cylindrical probe (length

1 inch; diameter 1/8 inch) is used. For detection of waves a small

wire biased above the plasma potential is used to detect electron

saturation current.

Before looking at some typical data it must be noted that it

is virtually impossible to form truly cylindrical screens. There is

most probably a variation in the center of curvature of - .5 cm in

the screen and for this reason no divergence is observed at r = 0.

In addition there is a competition between damping and geometrical growth.

Experimentally, they are found to be very closely balanced.

Upon application of a half sine wave pulse to the driver

chamber a cylindrically symmetric ingoing wave is launched at r = 10 cm.
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The wave propagates inward, converges at the center and emerges as

a cylindrically symmetric outgoing wave. If we set the probe at a

fixed position and look at the perturbed electron density as a function

of time, we see first the ingoing wave and at a later time the wave

after it has converged at the center and emerged as an outgoing

wave. This is apparent in Figure 6 .where the perturbed electron

density as a function of time is shown for 1 cm intervals. The ion

acoustic velocity as measured from this is 2.16 X 105 cm/sec which

indicates an electron temperature of - 2.0 eV.

The presence of both ingoing and outgoing waves makes it

difficult to make a detailed comparison between cylindrical and planar

phenomenon. In order to make this comparison a major modification

was made. The cylindrical screens were removed and a rectangular

chamber was added to the end plate as in Fig. 7. A deformable sepa-

ration screen that was adjustable from a plane to a half cylinder of

radius 10 cm was used. Then, under nearly identical plasma conditions,

a comparison of planar waves and half cylindrical waves was made.

Using a lock-in amplifier it is possible to take an inter-

ferometer trace of a continuous wave excitation. Figure 8 shows

the results for a planar separation screen with a frequency of 100 kHz.

The lock-in amplifier detects the amplitude of the wave at a given

phase with respect to the applied signal. For a plane wave we expect

it to have the form:

Par model HR-8.
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i(k + ik.)r + io
A(r) = Re A e

o

-k.r i(krr + )
=Ae 1 Re e

o

-k.r
= A ei cos(krr + )

o

For the case shown in Figure 8 we can measure k and k.. From this
k. r 1

we find. .044. From this and assuming ion Landau dumping we
r

can determine T /Ti to be approximately 13. This agrees with Te - 1 eV

and T. ~ .1 eV.
1

A similar interferometer trace for the case of the separation

screen deformed to a half cylinder of radius 10 cm is shown in

Figure 9. Unlike the planar case, the wavelength is no longer

constant for the cylindrical waves. The received amplitude for

the cylindrical waves will be the sum of J (kr) and Yo(kr).

A(r) = Re(Ao [Jo(kr + ) + iY (kr + )]

where k = k + ik.. For the case = 0 k can be expressed as
r 1 r

Ikirei . Tables of this are available [Nat. Comp. Lab., 1947, 1950].
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Figure 10 shows a computed interferometer trace for cylindrical

waves using the values k and k. as determined from the planar

interferometer traces. The wave length is not constant in this

case, though the disparity is much less than is measured from

Fig. 9.

Data is taken using a Biomation 610B transient recorder

which acts as a fast analog to digital converter. A description

of this system is given in the Appendix.
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III. SOLITONS

A. Theory

The properties of systems that support soliton solutions has

generated a great deal of interest in recent years [Scott et al. 1973].

Extensive work in plasma physics has been carried out since Washimi

and Taniuti [1966] showed that weakly non-linear ion acoustic waves

are governed by the Korteweg-de Vries (KdV) equation:

n an 1 33n-+ n + + 0at ax 2 5

Equation 1 is written in a frame moving at the ion acoustic velocity,

n is the fractional density perturbation, x is the distance in the

moving frame measured in electron Debye lengths D = T 1/2] and

t is measured in ion plasma periods =
p 4n e2

The asymptotic stationary solution corresponds to a super-

position of spatially separated solitary pulses-, solitons.

n(x, t) = 2 E Sech2 1/2(x - 2 st/)/De +

cs is the ion acoustic velocity - , E and are constants
i



determined by the solution of an appropriate time independent

Schrodinger equation with a potential well that is proportional

to -1 times the initial spatial density perturbation [Hershkowitz

et al. 1972]. The asymptotic stationary soliton solution arises from

a competition between non-linearity and dispersion.

There are several properties of one dimensional solitons

that can be used to identify them. Among them are: 1) Arbitrary

positive (compressive) density perturbations evolve after sufficient

time into a superposition of spatially separated solitons, or solitary

pulses; 2) The number and amplitude of the solitons is determined

by the solution of an appropriate time independent Schr6dinger

1 ,n)
equation; 5) The soliton velocity is given by [1 + ()x]Cs

5 n max s

where ( -) is the maximum density perturbation of the soliton;n max

4) The spatial width of the soliton, is proportional to [(-) ]-1/2
n max

which implies that the product of the square of the maximum ampli-

tude multiplied by the width is a constant; 5) Solitons retain their

identity upon collision with other solitons. Experimentally these

properties have been verified by Ikezi et al. [1970] and Hershkowitz

et al. [1972].

Maxon and Viecelli [1974A] have reported the first work

on solitons of dimensionality greater than one. They considered

spherically symmetric perturbations and derived a modified KdV

equation appropriate to a spherical geometry:
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_n n an 1 8n
-+-+n + =0
6t t + x 2 :x3

This equation is valid except in a region near the origin. A simi-

lar equation can be derived for cylindrical coordinates [Maxon and

Viecelli 1974B] starting with the fluid equations appropriate for

a cylindrical geometry with no z or A dependence.

n + -(nv) + nv = 0 Continuity equation (2)
bt r r

_ + v Momentum equation (3)

2
- + 1 - e - n Poisson's equation (4)

2 r r

kT
e

In these equations m is in units of ---- , n in units of n , r in units

-1
of "De' t in units of pi and v is in units of c .

We now make the transformation to a frame moving inward at

the ion acoustic velocity.

= -l/2(r + t)
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S= 3/2t

where e is a small parameter that will be used for expansion. The

scaling used in the transformation is chosen to be the same as

that of a soliton. We now expand the potential density and velocity

in powers of c.

(1) 2 (2)
n=1+En +En

v = C ( 1 ) + E2v(2)

S= el ( 1 ) + E2 ( 2 )

The time and space derivatives transform to

a a b an a _E/2 a 3/2 a

F transfor in a 1/2 a
ar 6r at 7 as

From the transformation we find that



r -3/2r.= - /2 + TI)

Equations 2, 3 and 4 then transform to the following equations

respectively:

E5/2 [n() + En (2) /2 n () + n(2)

F 3/2 . [1 + en(1 ) + e2n(2) ][v(1) + Ev(2)]

C5/2 ( + E(1) + 2n(2) [ (1) + E(2)
S 1+en +En V +

(5)

E5/2 ~[,(1) + Ev(2) _ 5/2 [v(1) + (2)

C5/2 (]) + E(2) [v ( l ) + GV(2)

S3/2 + [(1) + (2) (6)=- [ + E(6)
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2 2 3) (2)+ E( (i) 2)C - [ + ( + ) [ +E ]
2 (E + n) 4

2
(i) 2(2) (1 ) 2(2)

=E I + €22E2H 2En

(7)

We can now collect terms of various orders of E.

O(E) from Eq. 6.

() n(1) = 0

o( 3/2

for n ( ) , v(1) (1) 0 as -



Then we obtain

n(1) + v(1) = 0

(1) (1) o

S (1) -(1)

To find the differential equation governing n(1) (1I) and v (1 ) we

must go to higher order.

o(C2 )

a2 ( 1 ) _(2) +(1)2 n(2) (8)
2 2+

To this point we have not had to account for contributions

1 1
arising from terms with - dependence. The - factor gives rise tor r

a factor of the form

E3/2
E + 

The order of this term depends upon the denominator. If IEr I << 1
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this is of O( 3/2 ) while if I << jcE this is of 0(E/2). The

former will be assumed and its implications will be discussed later.

o(5/21

an(1) an(2) [(1)(l)] - (2) v(-
[V - o (9)

av(2) av(l) v(1) v(1) (2) (LO)
-7_ + v (o)

(2) v(2)
Solving Eq. 8 for n(2) and Eq. 10 for - and substituting these

results into Eq. 9 we obtain:

4(l1) + ,(1) am (1 )  (1) 1 a3 (1)

S- + --- +  = O

which is the modified KdV equation appropriate for cylindrically

symmetric ingoing perturbation.

In deriving this it was assumed that /1 << Ir. To under-

stand the implications of this we must consider how the initial

condition is entered into the problem. The initial condition is

centered at = 0 in the moving frame,



_E/2(ro o

.'. r =-t
o 0

3/2ro

where r is the radius at which the initial perturbation is applied.
0

The initial condition is then specified as n( , o). The initial

time is negative and time increases as the pulse propagates inward.

The time f = 0 at which Igi << J I cannot possibly hold is the time

for an ion acoustic wave to propagate to the origin where an expan-

sion in orders of c would not be valid in any case.

The value of t represents the distance traveled in the

moving frame. The solitons have a velocity that is dependent upon

the amplitude and in addition we expect an approximately - growth.
Jr

Assuming this we can approximately describe the soliton velocity as:

r 1/2
v =A 6n 1 c

n - s t S

0o 8 is the soliton amplitude at

where t = 0, where r = r and is the soliton amplitude at
0 n
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r = r . The constant A describes the detailed velocity amplitude
o

dependence and is of order 1. The distance in the moving frame is

then given by

=ASn o
( = A --- o ro s

The quantity T is given by

R
T =t'-t =t' -

o c s

The relation

then becomes

A r 1/2C t  R

n o s c

We can now choose representative values for t' and evaluate the
r

inequality. For t' = which represents the time for an ingoing
2c

s
linear wave to propagate half the distance to the origin we obtain-
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A EIoV2 << 1

which is true for moderate 8I
3r no

For t ' =
s

we obtain

n 1no 6

Because of the presence of damping the criterion is less stringent,

since a - growth is not observed.
r

The evolution of a weakly non-linear compressive pulse in

the cylindrically symmetric geometry should be governed by the

derived equation. This equation differs from the equation appro-

priate to spherical geometry in the factor of 1/2 associated with

the ' term.

B. Presentation of Measurements

The propagation of low amplitude pulses in the fully sym-

metric geometry has already been noted. For low amplitude pulses

the ingoing wave and outgoing wave are similar in shape and width

to the applied pulse. As the amplitude is increased this is no

longer true. Figure 11 shows the received signal detected at

r = 0.5 cm as the height of the applied pulse is increased. For low
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amplitudes a linear ion acoustic wave is launched. As the amplitude

is increased the wave grows in amplitude, steepens and forms into an

object that can be identified as a soliton [Hershkowitz and Romesser

1974]. For still higher applied voltages the soliton decreases in ampli-

tude and a new faster pulse appears. This new pulse is a burst of

particles, or a pseudowave [Alexeff et al. 1968], traveling balisti-

cally through the plasma with energy equal to the applied potential
kT

pulse. For pulse amplitudes less than -- e no pseudowave is launched.
e

Figure 12 shows a comparison of the propagation of a linear

(- < lno) ion acoustic wave and a large amplitude non-linearn

(i - 17%o) wave. At r = 9 cm for the linear pulse we see first in
n

time an ingoing wave that closely resembles the applied half sine

wave pulse, followed at a later time by a similar outgoing pulse.

As the probe is moved closer to the center the ingoing and outgoing

pulse appear closer in time and finally merge at r = .5 cm. At this

point the received signal again closely resembles the applied half

sine wave pulse. For the large amplitude pulse at r = 9 cm the

ingoing wave again closely resembles a half sine wave pulse. The

outgoing wave which has had. a longer time to evolve has evolved into

what can be identified as 3 solitons. The evolution into these

solitons is shown in the remaining traces. The increased velocity

with respect to an ion acoustic wave is evident from the trace

at r = 0.5 cm. The average velocity of the largest ingoing soliton

is found to be approximately 1.17 c.
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The probe was left in one position and the width of the

applied pulse varied to determine if the number of solitons was

dependent upon the applied pulse width. Fig. 13 shows the received

signal at .5 cm and at r = 6 cm as the width is varied. For very

narrow applied pulses a single soliton is observed. As the width

is increased the first soliton increases in amplitude, speeds up

and becomes narrower, a second soliton is seen to form. As the

width is further increased the solitons continue to increase in ampli-

tude and velocity. The second soliton merges with the first soliton

and for very wide applied pulses no individual soliton is observable

though the applied pulse has noticeably steepened. From the data

shown for r = 0.5 cm an estimate of the product of the width of the

soliton multiplied by the square root of the maximum amplitude shows

it to be constant within 10% for the first 4 traces.

To determine the velocity amplitude relationship of the

solitons, use was made of the fact that for very narrow applied

pulses where a single soliton was found the soliton amplitude depends

on the width of the applied pulse. The soliton amplitude can be

varied from - 1% to 10% while maintaining essentially a single soli-

ton. By following the propagation of the pulse the velocity can

be determined. The propagation of the point of maximum amplitude

was followed at 1 cm intervals for several soliton amplitudes. These

results were least squares fit to give the results shown in Fig. 14.

From this the velocity amplitude relationship for cylindrical soli-

tons was found to be:
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V = [1 + (1.05 + .2) .m ]c
n max s

The measurement of the velocity-amplitude relationship was

simplified by the fact that over most of the ingoing trajectory the

competition between geometrical growth and damping balanced (see

Fig. 12). The soliton amplitude was essentially constant over the

ingoing portion of the trajectory. For a purely ingoing linear

wave we would expect a (ro/r) 1 / 2 growth to occur. After accounting

for this geometrical increase the ion acoustic pulse is calculated

to have damped by a factor of 3 in propagating 9 cm. Making the

same correction for the soliton in Fig. 12 we calculate a damping

of a factor of 1.5 in traveling 9 cm. It must be remembered that

the (ro/r)1/2 growth should hold only for the linear wave. The

observed differences may be due to either differences in damping

or differences from non-geometrical growth.

C. Discussion

We can summarize the properties of two dimensional solitons

be stating that compressive density perturbations evolve into soli-

tons. The number of solitons is determined by the width and ampli-

tude of the initial density perturbation. Rarefactive density

perturbations do not evolve into solitons. The solitons retain their

identity after converging (colliding) at the center. All of these
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agree with the well known properties of one dimensional solitons.

In addition, we find that the soliton width multiplied by the

square root of the soliton amplitude is approximately constant

even though the amplitude, width and velocity are functions of

time. The velocity is greater than the velocity of a corresponding

one dimensional soliton. Both of these additional properties held

for three dimensional solitons and the first also holds for one

dimensional solitons.

It has been seen from these data that the properties of

cylindrically symmetric solitons are remarkably similar to those

of one dimensional solitons. Since no analytic theory exists for

solutions of the modified KdV equation it was of great interest to

investigate very carefully the detailed differences and similarities

that occur.

It was very difficult to state when the propagating pulse had

reached a final assymptotic state from which to evaluate properties.

To overcome this the scaling properties of the ordinary KdV and

then the modified KdV equation were investigated. This was first con-

sidered by Berezin and Karpman [1967].

The ordinary KdV equation is written as:

n n 3n
-- + n- + --- = 0ax
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We wish to consider a class of initial conditions of the form

n(x, o) = 8n f()

where n is the amplitude of the initial perturbation and L is the
n

width. f(%) is the functional form of the initial perturbation,

e.g., square pulse, half sine wave pulse, etc. We now transform

to a new set of variables where the transformation depends upon

the initial condition according to

~ X ~ n t
x=- n= t= t

L nn A

Upon substituting into the KdV equation and simplifying we obtain

-b + -- n -- + 3 n ;
nL 2 3 -3

at 2x L ax

We have the freedom to choose A such that the coefficient of the

second term. vanishes. Upon simplifying we obtain

3-an nn 1 n 2 2 8n
+ n L + -- - 0 where =L -2  3 nat x 2c 6x
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This was obtained using the following transformation

x - n 8' n t
n= /n n L

Under the given transformation all initial conditions are

transformed to a unit depth-unit width initial condition. Conditions

with the same numerical values for a evolve identically in the scaled

coordinate system even though the evolution in the laboratory may be

quite different. The number of solitons which evolve is determined

by the numerical value of a.

There exists a very wide variety of initial conditions for

which the evolution in this scaled coordinate system is identical.

The number of solitons in each case must be identical. It comes,

then, as no real surprise that the dimensionless scaling of the time

independent Schrddinger equation is the same as the scaling for the

ordinary KdV equation. The verification of this scaling for planar

excitations and measurements of the scaling for the cylindrical case

is of interest and has not been considered before. In order to

carry this out the deformable screen DP device was used.

The importance of the dimensionless scaling method is that

it applies for all time and not only in an as ymptotic region. The

known analytic theory provides a connection between the initial con-

dition and the final assymptotic state where the solitons are
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spatially separated. The use of the dimensionless scaling method

allows a direct comparison of soliton formation during the evolu-

tion from the initial condition. It is only needed to be able to

identify a point in the evolution process that is easily identi-

fiable for all initial conditions. This point in the evolution

must also be able to be measured quite accurately. The point of

emergence of the first soliton from the remaining envelope was

chosen. As can be seen from Fig. 15 the formation of the local

minimum between the first soliton and the remaining envelope of the

initial condition occurs quite quickly. It is easily and accurately

measured and appears for all initial conditions that evolve

into solitons.

A large number of data points have been measured for a wide

variety of initial conditions. The dimensionless time, T, has been

calculated as has the value of the dimensionless scaling parameter c.

These data are plotted in Fig. 16j . The points represent both planar

and cylindrical initial conditions. Both initial conditions are

uniformly distributed, so no distinction is made between

them. The points are distinguished by varying values of

n6n  of the initial condition. A systematic variation with --n is
no no

seen. Larger amplitude initial conditions require a longer time to

evolve in the scaled coordinates than an initial condition with identi-

cal value of a but a smaller amplitude initial condition. While we

do not know the analytic form to be expected we do expect the points

to fall on a smooth curve if the scaling holds.
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There are several sets of data that were taken for fixed

initial condition amplitude and varying the width. These are

shown in Fig. 17 where a differentiation is made between planar

and cylindrical initial conditions. The same functional dependence

is observed for all sets of planar data. The slope in each case is

nearly identical but there is a consistent deviation with the initial

invalue of -. The cylindrical solitons, however, do not display the
n

same functional dependence as is evident from the figure.

Differences do exist for the scaling of the modified KdV

n
equation for a cylindrical geometry. The presence of 2 term does

not affect the transformation used as it will scale the same as the

bnn term.

The presence of the - term, however, restricts the choice of

initial conditions. For the ordinary KdV equation a transformation

of the type

x = x+ a

t'= t + a

leaves the form of the equation invariant. We can then define n(x, o)

to be an initial condition centered at x = 0 at time t = 0. Making

the substitution x = ,t = I and using the above translation the

form of the modified KdV equation becomes
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6n hn 1 3n n- n+ n  + + 2(t' a)

a-o

which is no longer the initial equation.

If we oansider the class of initial conditions of the form

n(x, to) = n

the scaling then converts the modified KdV equation into

an + n 1 3 n n+n + ++ -= 0
at bx 2 3 2t2a ax

The initial condition becomes a unit width-unit depth initial con-

dition but since r scales as r/L it is situated at ro/L. Figure

18 shows graphically the effect of the transformation for the ordi-

nary KdV equation and the modified cylindrical KdV equation. In the

scaled coordinate system the initial radius of the perturbation

depends upon the width of the initial condition since the initial

radius r , in Debeye lengths, is approximately constant for all data.

The importance of the n term depends upon the initial radius in the

scaled coordinate system. For this reason we would not expect
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identical values of a to exhibit the functional dependence as the

width is varied to change a. This is in agreement with the data

in Fig. 17.

There exists a wide variety of equations that support soliton

solutions, included in these are attempts to modify the ordinary

KdV equation to include more realistic plasma effects. Tappert

[1972] has included finite ion temperatures. Ott has included

damping due to ion-neutral collisions [1971] and Ott and Sudan

have treated Landau damping [1970].

Schamel [1973] has derived a modified KdV equation that allows

for trapped electrons

+ bn 1/2 n 1 23n
t +x 2 x3

where b is a parameter that is the measure of electron trapping.

Under the transformation

1/2Sx 8n/n t/28n
L - L n

we obtain

3-
~ -1/2 a~ 1 a n+ n + 2O
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where

6n1/2 2 1/2
0 =-- Ln

Recomputing T and a and assuming b = constant does not significantly

improve the results. The value for b is determined by the electron

trapping. Only a weak dependence on n is allowed so the assumption
n

of constant b is reasonable. This modified KdV appears insufficient

to explain the deviations in Fig. 17.

Tran and Hirt [1974] have investigated the effect of a two

species plasma deriving a modified KdV equation

an an 3n
2 + 7n T+ O

The value of 7 is a very sensitive function of the relative con-

centration and mass ratio of the second species which can arise

from impurities in the plasma. A 2%/ concentration of hydrogen in

an argon plasma changes 7 from 1 to .067. The dimensionless time

and scaling parameter appropriate to the equation are:

T 6n/n t = 6n/n L2]1/2
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Both T and a are functions of 7. One could attempt to explain the

systematic deviation with 8n in Fig. 17 from this. It would notn

be consistent with the manner in which the experiment was performed

however. Much of the data was taken with identical plasma and

vacuum conditions. Increasing the amplitude and decreasing the

width to obtain the same value of a yielded a different dimension-

less time for the evolution. Several measurements were taken within

a short time interval.

If we choose the time scaling of the ordinary KdV equation

and search for a functional form of a that gives a smooth curve we

obtain the results shown in Fig. 19. The value for a is found to be

a = [(I)- L 2 1]/2

No equation has been found that will yield this scaling. It

may be necessary to change the scaling of both a and T.



IV. CYLINDRICAL ION-ION BEAM INSTABILITY

A. Experimental Measurements

It has already been seen that by applying a DC potential

between target and driver plasma a steady state radially ingoing

ion beam can be established (Fig. 4). For a limited range of beam

velocity a coherent ion-ion beam instability is produced [Hershko-

witz et al. 1974]. This is the result of cylindrical standing waves

resonating with ingoing and outgoing beams. This experiment differs

from those in a conventional DP device in that the boundaries play

a very important role. The inner grounded screen requires vanishing

potential on its surface.

The instability is detected by a positively biased Langmuir

probe which collects electron saturation current. The signal is

then analyzed using a spectrum analyzer. The power spectrum for

various beam velocities is shown in Fig. 20. For beam velocities

greater than those shown the instability abruptly ceases as it does

for beam velocities slightly less than those shown. The beam velo-

cities are determined by digitizing the energy analyzer for each

beam velocity. The digitized traces for a given beam velocity

are added 64 times to reduce the level of fluctuations due to the

instability. The averaged traces are then least squares fit to the

Tektronix 1L5 plug in unit.



sum of two Gaussians with the width restricted to be the same.

A typical fit is shown in Fig. 21. In this manner the beam

velocity can be accurately determined even in the region where

the beam is not resolved.

The instability manifests itself as a series of discrete

frequencies that are approximately harmonically related as was

seen from the power spectrum. A simultaneous comparison of detected

signals at different positions using the two probes showed the

oscillations to be in phase everywhere. This suggests cylindrical

standing waves. To verify this the power spectrum was observed

at several radial positions. The results are shown in Fig. 22.

The lowest mode amplitude decreases monotonically as the probe is

moved from the center to the outside. The second mode, however,

shows a node at r = 7 cm and an investigation of the third mode shows

2 nodes between the center and the outside. This further enforces

the identification of the instability as cylindrical standing waves.

From Fig. 20 it is apparent that instability frequency depends

upon beam velocity. A plot of this is shown in Fig. 23 where we

see that the frequency is linearly proportional to beam velocity

for the lowest 3 modes seen. For the lowest mode we obtain from

Fig. 23

= .66 vBk
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Before attempting to compare these results with theory we must

determine the distribution function appropriate for the beam. This

-is accomplished using two energy analyzers; one oriented in the

radial direction and the other in the azimuthal direction. A beam

is observable by the radial energy analyzer for all radial positions.

The azimuthal analyzer can detect a beam in a region near the center

of the chamber. The size of the region was seen to depend upon the

energy of the beam. Figure 24 shows a comparison of radial and

azimuthal energy analyzer traces for a beam of energy 6.0 eV. The

change in amplitude of the background plasma as the radial analyzer

approaches the cylindrical screen is due to depletion of the plasma

in the region between the analyzer and the screen. This depletion

arises from the blocking of ion trajectories by the energy analyzer.

Ions that would normally pass through the region occupied by the

analyzer and reflect from the region near the screen can no longer

do so. The radial energy analyzer detects a beam for all radii

while the azimuthal analyzer detects a well identified beam for

radii less than 4 cm. If we decrease the beam energy the radial

analyzer shows similar traces. For a beam of 3.0 eV the azimuthal

analyzer detects a well established beam for radii less than 5 cm

as can be seen from Fig. 25. For still smaller beam energies which

appear as barely resolved the azimuthal and radial energy analyzers

detect similar distribution functions for r 5 7.0 cm.
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When the beam is accelerated the width in energy remains

constant. This imnlies that the intemperatur- velocity space is

drastically reduced. This allows one to approximate the beam by

a delta function. For the observed distribution function we can

approximate it by

fB(v) v8 (v - v) v = + vvr )1/
B

where we are in cylindrical coordinate velocity space.

The beam is represented by a ring of particles of energy EB

in velocity space. The particles enter the target plasma with

energy EB but the velocities are distributed over an angle. The

envelope traced out by the angular spread over all points on the

cylinder represents the boundary over which the ring distribution

should hold. This. is shown graphically in Fig. 26.

There are two possible causes of the angular spread of the

beam as it enters the plasma. The incoming ions have a finite ion

temperature of - .2 eV. The ratio v B/c represents the tangent
B iT

of the angle where 28 is the angular spread, where ci = .

For a two volt beam

vB/Ci = tan e =
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For the system used we would expect.the region to have a radius of

3 cm. A further increase in the angular spread can arise from

the passage through and between the two fine mesh cylindrical

screens. If a particle passes through the sheath surrounding one

of the screen wires it will be attracted or repelled depending

upon the potential of the wire. Conservation of angular momentum

allows only those ions with small impact parameter or velocity to be

captured by the wire. The particle will follow this perturbed

orbit in the region between the screens and undergo another

randomizing passage through the inner cylindrical screen. In both

of these mechanisms the lower the beam velocity the greater the,

angular spread will be.

B. Discussion

In order to predict the instability and its dependence upon

beam velocity the Vlasov equation in cylindrical coordinates was used:

-+vT +- + (E + + E - = 0
at r r r m r r jv r bO

We now look at the restrictions on the distribution functions for a

stationary homogenous equilibrium by setting t = 0, 0, E = 0

to verify the restrictions will be compatible with the ring

distribution function. We obtain
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I f bf
oF 2

The solution to this requires that fo be a function of v = + Yv

only, i.e.

f = (V) = fo() fo( + v )

This restriction holds trivially for the background ion and electron

Maxwellians. The ring distribution also satisfies this condition

2 2
since it depends only on 6(v - vB) where v = r + v . Under

these conditions we have a stationary homogenous state, with no

zero order electric field, about which we can perturb.

We have observed the ring distribution function to exist over

a region the size of which is determined by the beam energy. 
The

instabilities observed typically occur for beam energies of less

than 2 eV. For these energies the ring distribution function is

observed to hold in a region that extends to within 3 cm of the

boundary.

We can project the ring distribution function onto one axis

in velocity space to see if it corresponds to an unstable distri-

bution unlike the shell distribution function which projects to a
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stable distribution function. The ring distribution in cartesian

coordinates can be represented as:

( 1 x2 2
fB(v 2r v (v - vB) v + v

Integrating out the v dependence we obtain projection onto the
Y

v axis as
x

FB(x) = - 2rrv + - v vBB nB x y B y

evaluating we obtain

FB 1 1 for Ivx, < v

B(x 2  2 2B

=0 Iv1> VB

This is plotted in Fig. 27. For very large beam velocities FB'(w/k) = 0

for low frequency oscillation so the system will be linearly stable.

For very small vB we again expect linear stability. For a range

of VB we expect the system to be linearly unstable.
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To investigate this we perturb the plasma by writing

f(r, , t) = n f (v) + f(r v, t)

Then

I  e o

+ V - e V 0
t 1 m by

We can solve this by integrating along the characteristics from

t = 0 to time t.

bf
G, v, t) aT

where the integral will follow the characteristics. Initially

we will work in cartesian coordinates using plane waves as a

complete set in which to expand. Here the characteristics are

given by

x = x -v (t -7)

y = y - v (t - T)
Y
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if we expand (r, t) in plane waves and look at one mode.

@O, t) = o e i ( a x + by) - iwmt

then substituting we obtain

fl(, , , t) em (r, t) t ds e i(ax + y- )s

x (av +bv) o where s = t - T
x y v av

letting t 4 m we have a contribution if w. > 0 and then

av + by bf
f ( , t) = - e (r, t) x y 1 o

Sr 'm -i(av + by - w) v
x y

To make the connection to cylindrical geometry, we compute

the first order density fluctuations.

n(r, t)= j fl (r, v, t)dv

substituting and using the identities



x = r cos E y= r sin A

v = v cos A v = v sin A
x y

a =k cos C b= k sina

we obtain

n(r, t) m (r, t) vdv 'do kvcos' ) f
, mkv cos - a -W v av

defining

G(, fo) = k-2 co vdv d. Cos fk o 0 W V v
cos - kv

we have

n(r, t) = m (r, t)k2 G(w, fo)

A specific form was previously chosen for (r, t). We now choose

@ to depend on a according 
to:

v iv/ 2 iva
- e eo rr



We can recover cylinder functions for the perturbed density by using

the identity

(k) 1 o d e i ( k r cos w) iv(w - t/2) ivo

The explicit cylinder function obtained depends upon the path chosen

to evaluate the integral. For the boundary conditions of the experi-

ment Q = 0 on the inner cylinder we obtain v = 0 and kr = a where

ac is the pth zero of the Bessel function J (p). To obtain the

dispersion relation we substitute the density

n(r, t) = J (kr)k2 G( f)m o o k o

into Poisson's equation

V2 = - 4 eT e n

j JJ

which yields
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D(k, w) = 1 - E w2 G ( foj)
Po j k oj

w 2 k 2  vdv 2 d kv cos e 1 foj= i - Em . k vdv dk
pj o o kv cos - mv 6v

The terms for background electrons and ions can be reduced

to derivaties of Fried-Conte functions

2 2

D(k, ) =1- e Z Z w

2
nB wpi dv 2 kv cos 8 1 oB- vdv e- -

ko2 d kv cos 6 - w v v

an explicit form for the beam contribution due to a delta function

region velocity space can be calculated for

IvBI < II
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2 2-_1 ki f_____
je c B k

k k k

W2 W 1 -3

B- np i 2 k 2 2 ) /2]

For IvB > we must make an analytic continuation of the

dispersion relation for real w. The contribution would be zero

otherwise. This is analogous to the deformation of the contour used

to evaluate the Fried-Conte functions for 7 < 0.

Using the UCSB (University of California at Sata Barbara)

on-line computer system the dispersion relation with a fluid

equation contribution for the ion and electron term has been solved

by iteration. The value of k is held fixed and the iteration is

performed for a wide range of beam velocities. This is repeated

for several beam densities. Figure 28 shows a plot of a vs vB and

7 vs vB for the lowest mode with nB = .3. A maximum in the growth

rate is observed for a beam velocity of 1.4 x 105 cm/sec. The ion

acoustic velocity is 1.5 x 105 cm/sec for this case. In the region of

maximum growth rate the next part of the frequency is proportional to

VBk with

w = .61 v Bk



If we express the dependence of the instability frequency

on beam velocity as

w = avBk

we find the parameter a remains approximately constant as the beam

density is changed. This is shown in Fig. 30. The experimental

value of .66 falls well within the observed range of a.



V. CONCLUSION

In a cylindrical geometry compressive ingoing ion acoustic

pulses have been seen to evolve into "cylindrical solitons". The

properties of these cylindrical solitons have been found to be

consistent with those of one dimensional solitons (previously

predicted and observed) and three dimensional solitons (previously

seen in numerical solutions). The number of solitons is determined

in a manner similar to the one dimensional case. A detailed investi-

gation of the evolution of both planar and cylindrical solitons

showed that differences exist during the evolutionary phase. For

planar solitons the scaling of the Korteweg-de Vries equation was

found to be insufficient to explain the observed scaling. However,

the scaling has the'same functional form for all cases. Detailed

scaling arguments were found to be difficult to apply to the evolu-

tion of cylindrical solitons.

An ion-ion beam instability was observed in the presence of

steady state beams for a limited range of beam velocities. The

beam was found to be a ring in velocity space. As the beam velocity

was increased from zero there was an abrupt onset of the instability.

The instability manifested itself as cylindrical standing waves.

The frequency of the instability was seen to depend upon

the beam velocity and an upper limit was found for the beam



velocity above which the instability was not observed. Numerical

solution of the dispersion relation appropriate for the standing

waves yielded good agreement with the observed instability.



49

Figure 1 Cylindrical double plasma device with two insulated

concentric plasmas. The inner plasma is produced

in the right half of the- device . DC beams. can be

controlled by varying mB. If B is pulse a wave

can be launched.
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Figure 2 Schematic diagram of the ion energy analyzer. Two

grids and a collector are used. The first grid is

allowed to float negative. The second grid is

ramped positive while the collector is biased at

-65 volts. Ground shields are placed between the

grids and the collector to prevent capacitive pickup

between various elements.
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Figure 3 Current collected by the energy analyzer is displayed

versus the voltage applied to the retarding grid for

several different beam energies. The vertical scale

is arbitrary and the horizontal scale is 2 volts per

division.



Figure
Figure 3
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Figure 4 Power spectrum of the electron saturation current

(top) and a differentiated energy analyzer trace

(bottom). For the bottom trace the vertical scale

represents the ion distribution function f(v)

plotted versus the energy to the retarding grid

(1 volt per division).



Figure 4
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Figure 5 A comparison of the ion distribution function as seen

by an energy analyzer when plotted versus the voltage

to the retarding grid (top) and when plotted versus

the ion velocity v (bottom). When plotted versus E

the density and "apparent" temperature are equal.

When replotted versus v we see that in fact the beam,

density is much less and the beam has effectively

cooled by its acceleration.
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Figure 6 Propagation of a low amplitude ion acoustic wave

in a fully cylindrical geometry. The vertical

scale is perturbed electron number density

(arbitrary units) as a function of time (the

horizontal). The width is 200 Psec. The top

trace is taken at r = 9 cm and suceeding traces

are at 1 cm intervals.



Figure 6



Figure 7 Schematic of the modified double plasma device. The

separation screen shown here as a half cylinder is

continuously deformable (from the exterior) to a plane

separation screen. The discharge is maintained by

filaments in both chambers as in a conventional-DP

device.
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Figure 8 Interferometer trace for a planar separation screen.

The wave amplitude with respect to a fixed phase of

a reference signal is plotted as a function of distance.
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Figure 9 Interferometer trace for a half cylinder separation

screen with radius 10 cm.
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Figure 10 Computed interferometer trace for half cylindrical

wave. The values of kr, k from the planar case of
1

Fig. 8 were used. The amplitude of the appropriate

Hankel function was computed and plotted versus distance.
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Figure 11 Electron density as a function of time at r = 0.5 cm,

following the application of a half sine wave pulse.

Signals are labeled by applied pulse amplitudes.
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Figure 12 Perturbed electron number density as a function of time

at several radial positions. The dotted traces repre-

sent linear ( < lo%) ion acoustic pulses (with ampli-

tude adjust for comparison). The solid traces represent

nonlinear pulses propagating, steepening and breaking

into solitons.
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Figure 13 The left portion shows the perturbed electron number

density detected at r = 0.5 cm versus time. The right

hand side shows the received signal versus time at

r = 6 cm. The traces are labeled by applied pulse

widths.
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Figure 14- Velocity of a single soliton as a function of the-

maximum soliton amplitude.
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Figure 15 Perturbed electron number density as a function of

time at 1 cm intervals. A localminimum is seen to

form between the first soliton and the remaining packet

8 cm from the screen.
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Figure 16 The dimensionless time T = t/L plotted versus.
n

the dimensionless scaling parameter a = (- L ) 1/2
n

Points for both planar and half cylindrical initial

conditions are plotted and both are distributed uni-

formly over the graph.
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Figure 17 The dimensionless time is plotted versus the dimen-

sionless scaling parameter for several sets of data.

In each set the initial amplitude is held constant

and the width of the applied pulse is changed to

vary the value of 0.
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Figure 18 The effect of the scaling transformation is shown

graphically for both the ordinary KdV equation and the

cylindrical KdV equation. For the ordinary KdV

equation all initial conditions may be transformed to

a unit width-unit depth initial condition at the origin.

The cylindrical KdV equation, however, transforms to

a unit width-unit depth initial condition located

at a radius determined by the initial radius in the

lab and the width of the applied pulse.
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Figure 19 The dimensionless time is plotted versus a fit scaling

parameter. The function form of the scaling parameter

was chosen to yield a smooth curve.
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Figure 20 Power spectrum of detected electron saturation current

during instability, showing the first 3 harmonics as

a function of beam velocity.
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Figure 21 A comparison of the detected energy analyzer trace

and a fit to the sum of two Gaussians. This is used

to determine the beam energy very precisely, even

in the region where beam and plasma are not well

separated.
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Figure 22 Power spectrum for the lowest 2 modes shown at

varying radial positions.
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Figure 23 Frequency versus beam velocity for the lowest 3

harmonics. No unstable modes are observed for

vB < 0.9 x 10 cm/sec or vB> 2.2 x 105 cm/sec.
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Figure 24(a) Ion distribution function versus voltage applied to

the retarding grid for the radial energy analyzer.

Traces are labeled by radial positions. The beam

is clearly visible for all radial positions.
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Figure 24(b) Ion distribution function versus voltage applied to

the retarding grid for the azimuthal energy analyzer.

Traces are labeled by radial position and beam energy

is identical with that of Fig. 24(a). The beam appears

as well resolved at r = 4 cm.
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Figure 25 Azimuthal energy analyzer traces for a 2.5 eV beam.

The beam appears well resolved at r = 5 cm.
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Figure 26 Graphical representation of how a radial beam with

an angular spread of 20 gives rise to a uniform

density and ring distribution function in a region

centered about the origin.
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Figure 27 The projection of the ring distribution function onto

one axis. An integrable sigularity occurs at v = + vB.
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Figure 28 Frequency (u) versus beam velocity and growth rate 7
nB

versus beam velocity for - = .3. In the region of
n.

maximum growth rate c = Ov Bk where O = .645. This

plot arises from solution of the dispersion relation.
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Figure 29 Plot of a versus beam density where a is determined

from a = avBk in the region of maximum growth rate.

The values of a are determined from numerical solution

of the dispersion relation for various values of beam

density.
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Figure 30 Memory allocation of data taking program.
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Figure 31 Schematic of location of program control switches.
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Figure 32 Chip placement diagram for fast buffer memory system.
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Figure 33 Circuit diagram for fast buffer memory system.
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APPENDIX

DIGITAL DATA TAKING SYSTEM

A. General Description

A versatile computer operated data taking system was con-

structed using equipment available at the University of Iowa. The

system consists of a Control Data Corporation (CDC) 160 computer

and associated peripheral equipment and an interface to the experi-

mental apparatus. A Biomation 610B transient recorder, which

serves as a fast analog to digital converter (ADC), digitizes the

data and transfers it through the interface to the computer for

processing. The Biomation 610B can digitize 256 data points with

a resolution of 1 part in 64 and store them in its own internal

memory for later readout by the computer. Data can be digitized

at rates up to 100 nanoseconds per point.

The computer equipment presently on line with the system is:

1) CDC 160 Computer (4096 words of 12 bit memory)

2) CDC 163 Mag. Tape System (2 tape drives)

3) CDC 166 Line Printer (250 lines per minute)

4) CDC 161 Typewriter Station

In addition, the nuclear physics laboratory has a wide range of

compatible CDC equipment, including a CDC 1604 computer system
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with Fortran capability. Tapes can be generated by the CDC 160 to

be processed on the 1604 system. The CDC 160 computer can be

replaced with no changes to the interface by a CDC 160-A computer

which has options for up to 32 k of memory.

Interaction of the experimenter with the computer and vice

versa is accomplished by digital to analog converter (DAC) and by

means of two rows of switches connected through the interface.

Programs are generally written to scan the state of the switches.

Changing the state of a switch will cause the program to branch to

a predetermined routine. In this manner quite general purpose

programs can be written. The DAC's are used to drive scope displays

for the processed data to be displayed upon.

With the system described here, many useful functions are

possible. Several of them are: For low amplitude signals or

signals in which the noise is comparable to or greater than the

signal, by digital addition of many passes the relative noise level

is reduced and a clean signal is recovered. Even in the cases where

the noise level is quite small, repeated addition of successive

passes gives better resolution of the wave form. Precise measure-

ments in time of flight experiments is possible with digital data.

After repeated additions, the maximum (or minimum) is usually

identifiable as one channel. For data for which an expected form

is known a computer fit to the data is possible. An example of
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this is seen in Fig. 21. Through the use of digital to analog

converters, voltage levels from the computer can be fed to

experimental apparatus, e.g. voltage controlled oscillators,

remote programmable power supplies, and wave form generators, etc.

With two Biomations correlation function measurements become possible.

With the existing equipment these and many more measurements

are possible, limited only by the time resolution of the analog to

digital converter (Biomation 610B).

The initial work on the interface from the Biomation to the

CDC 160 computer was done by Dr. Stephen Wender [1973]. The

wiring to convert the CDC logic levels (-18,0 volts) to the standard

TTL logic levels (0,5 volts) and the logic circuitry necessary to

decode the computer selection of devices was done first. Two rows

of 12 switches each (used for program control) and circuitry

for inputing from the Biomation were also completed by Dr. Wender.

In his initial design there were 8 input ports that could be used.

Two were used for program control switches and one was used for

the initial Biomation 610B. A second Biomation has recently been

added to the system. The four remaining parts can be used for any

device with digital output (e.g., a digital voltmeter).

The author has extended the previous work to include provisions

for 8 output ports. One digital to. analog converter (DAC) can be

connected to each port. This allowed for computer feedback of
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of voltage signals to the experiment. The most standard use for

the DAC is for scope displays of the digital data. They are also

used to drive an x-y plotter for graphical copies of the processed

data.

A fast buffer memory system was also designed and. constructed

to increase the transfer rate between the Biomation and the CDC 160

computer. The Biomation can output the digital data at a rate of

either 2 microseconds per word or at a rate greater than 512 micro-

seconds per word. The CDC 160 computer can input information at a

rate of 4.8 microseconds per word. To obtain maximum transfer rate

the Biomation dumps its memory into a buffer memory at 2 microseconds

per word and when it is done the computer reads the buffer memory

at 4.8 microseconds per word. This decreases the time for transfer

of one data pass from a minimum of .13 seconds to .0015 seconds.

B. Program Description

1. Program

Data-Take, D-A, with Autoscale

2. Purpose

General purpose data taking program. Signal averaging by

simple addition up to 64 times. Provisions for storing and viewing

up to 12 data sets are included; data can then be dumped on magnetic



tape with an identifying header of up to 256 symbols. Program

control is by means of the switch box.

3. Memory Usage

Locations 00008 to location 1000 are used for program

storage. Locations 10008 to 14008 are used for scratch storage.

Locations 14008 to 20008 are termed working storage. Locations

20008 to 77778 are divided into 12 storage areas of 4008 = 25610

words (see Fig. 30).

4. Program Control Switches

Two rows of twelve switches are used for program control

(Fig. 31). Each row represents one computer word and is grouped

into four sets of three switches. Each set of switches represents

one octal digit. Thus, any row of switches can be set to represent

any number from 00008 to 77778. The three switches that represent

an octal digit are a binary representation of that digit (e.g.,

on-off-on represents 5). A switch is given a 1 value by setting

and leaving it toward the top.

Switches 1-6 on the bottom row are used for program control.

The remaining 18 switches are used to feed information to the pro-

gram as it executes. Switches 7-12 of the bottom row are used to

tell how many times a signal should be averaged. They can be set

from 1 to 778 = 6410.8 10
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Switch 1 on the bottom row is used to increase the versa-

tility of the program. The role of switches 2-6 depends crucially

on what position switch 1 is set to. For switch 1 = 0:

Switch 2: Causes retake of data when set to on position and

then returned to off. Averaging will take place and a return to

the display mode will be made. In the display mode the last data

set taken is displayed. This is stored in the working storage

area of Fig. 1.

Switch 3: When in display mode setting this switch on then

off again causes the displayed data to be multiplied by a factor of 2.

Switch 4: When in display mode setting this switch on then

off again causes the displayed data to be divided by a factor of 2.

Switch 5: This is used to store data into one of 12 avail-

ablve storage areas. The storage area is determined by the top row

of switches. Switches 1-4 of the top row are used for this. The

computer treats the remaining 8 switches as if they are zero,

regardless of what they are set to be. The top row is then treated

as the first word address to which the data is to be moved. This

can take on any value from 20008 to 74008 . Switches 1-3 are used

to determine the first octal digit of the location, e.g., 2000,

4000, etc. The fourth switch is used to determine if the data is

stored at x0008 if the switch is zero, or at x 4 008 if the switch is

set. Caution. It is possible to destroy the program if a store is

made to location 00008 or 0400
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Switch 6: This is used to view the 12 storage areas. Switches

1-4 of the top row select the appropriate storage area. They can be

changed while switch 6 is set. The remaining 8 switches on the top

row are used to zero one location for display purposes. This allows

comparisons of different sets of data. These 8 switches can take

on values from 0 to 3778 corresponding to the 256 channels of the

Biomation.

There are two 8 bit D-A converters available to the system.

One of these is connected to the lower 8 bits of the 12 bit computer

word while the other is connected to the upper 8 bits. Depending

upon the number of times averaged, it may be more convenient to

use one of these over the other. Provisions for this have been

made in the program and a choice is implemented when switch 1 of

the lower row is set to 1. Switch 1 set to 1:

Switch 2: Used to dump data onto magnetic tape. When

switch 1 and switch 2 are thrown in that order, the input light on

the typewriter station should come on. A header of up to 256

characters can then be typed in. The symbol "/" is not allowed as

a valid symbol. At the end of the header a "/" is typed and this

initiates the dumping of the header and the 12 storage areas in the

computer onto magnetic tape. A return is then made to the display

mode. Switches 1 and 2 should be returned to the zero position

before typing in the header.

Tape to be written on must be loaded on a tape drive with unit
number set to 1.
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Switch 3: This selects the D-A converter that is connected

to the upper 8 bits. The switch near the oscilloscope must also

be in the correct position. To change from one to the other set the

switch near the oscilloscope to the desired D-A converter and then

flip switch 1 followed by either 3 or 4. Return both switches to

off and the display should work.

Switch 4: This selects the D-A that is connected to the

lower 8 bits. It is selected as described in the previous section.

5. To Run

Load program, clear and run from P = 0100. To initialize

Biomation remove trigger signal, set to external trigger, clear

computer and run from 0100. Light on left side of console should

display static "IN". Remove from run, then clear and run from 0100.

This assures that the first word input from the Biomation will be

recognized by the computer as the first data point. It may be

necessary to repeat this later if display indicates improper trigger.

Connect trigger to Biomation and proceed to take data. If problems

occur, run from 100 to take data or from 153 to go directly to

display mode. (Note: If it is run from 0100, the first thing the

program does is try to input data.)

6. Program

160 Data Plot
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7. Purpose

To plot data that has been stored on magnetic tape.

8. Memory Usage

Locations 0000 to 1400 are used for program storage while

locations 1400 to 7777 are used for storing data read in from

magnetic tape.

9. Use

After loading program into computer run from location 0100,

all switches on the switch box must be set to zero. The top row

of switches is used to transfer information to the computer while'

the bottom row is used to control the program. The switches in

the bottom row will be labeled from 1-12 staring from the left.

Switch 1: The left most switch is used to input data from

the tape. Flipping the switch momentarily inputs one file from the

tape and should type out the associated header. If switch is not

returned to zero position, the tape will continue to read in.

Switch 2: Searches forward one file mark on the data tape.

Switch 3: Searches backward one file mark on the data tape.

Switch 4: Displays the data on the oscilloscope. It is

used to display several sequential sets of data. The sets to be

displayed are specified by the top row of switches. The left four

bits specify the starting address. The program treats the left four

bits as the uppermost bits of a word with all other bits set to O.
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The number of consecutive sets of data to be display is specified

by the lowest four bits of the top row of switches.

Switch 5: Plots the data on the x-y plotter. The data to

be plotted is specified in the same way as for displaying with

switch 4. The upper four bits determine the first data set to be

plotted while the lower four bits determine the number of plots

to be put on the same page.

Switch 6: Plots a square to help in the alignment of the

x-y plotter. The square plotted has the maximum range of x and

y values possible and thus serves as a border for the paper.

Switch 7: Divides all of memory by 2. This is used in

scaling to the correct height.

Switch 8: Multiplies all of memory by 2 in case the data is

too small.

Switch 9: Displays locations 1400 to 2000 with the channel

specified by the lower 8 bits of the top row set to zero. This

can be used to follow the evolution of a waveform.

Switch 10: Used to exchange certain spectrum that are

specified. The contents of locations 1400 to 2000 are exchanged

with the data starting at the location specified by the left 4

bits of the top row.

Switch 11: Adds the amount specified by the lower 8 bits

of the top row to the spectrum stored starting in location 1400.

This is used to adjust the heights of different spectrum.
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Switch 12: Displays both the contents of locations 1400

to 2000 but also the spectrum specified by the left 4 bits of the

top row. This is used to compare the present data set to which

one is adding set amount to the previously adjusted data set. With

switch 12 set, any other switch can also be used. (Note: With

switch 12 and switch 4 there is a slight problem with triggering

of the oscilloscope. It is necessary to expand the trace with the

time base slightly in order to get all of the traces displayed

properly.)

C. High Speed Buffer Memory

In order to fully utilize the high speed characteristics of

the Biomation 610B, it is necessary to build a high speed buffer

memory. With this memory it is possible for the Biomation to read out

its memory at 2 microseconds per word and then for the 160 computer

to read the information at its highest possible operating speed.

This fast buffer memory is built on a card that fits into

the original interface built by Dr. Stephen Wender. It makes use

of the signals available from the interface. Figure 32 shows a

diagram of the chip placement on the card. Figure 33 is a schematic

circuit diagram with a list of the integrated circuits used.

The sequence of events that occur is described below. The

computer executes a 7500 5400 instruction. When this happens,

the 5400 A line from the computer makes a O to 1 transition. This
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causes the output of IC9A to make a 1 to 0 transition. This

fires the one-shot IC19. The Q output of this is used to arm

the Biomation. The Q is fed into nand gate IC10A. The output

of this is fed to the clear pin of the 4 bit counters IC13-14.

After the Biomation is armed, it will be triggered and the flag

will go high. The flag is inverted by ICgC and fed to the write

enable memory chips where it causes the information putout by

the Biomation to be written into the memory chips. This sig-

nal is also nanded through ICllA to the one-shot IC17. The firing

of the one-shot advances the counters, so the next word from the

Biomation will be read into the next memory location. The flag

from the Biomation is also inverted twice by IC9D and E and fed to

the word command on the Biomation. This causes the flag to be

removed until the next word is available. After executing the 7500

5400 sequence a 7600 (input to A) is executed. The input request

line from the computer makes a 1 to 0 transition. This, combined

with the 5400 A line from the interface, is fed through ICl2A and B

and through IC9F to one input of IC10B. The other input of the

nand gate IC1OB comes from an 8 input nand gate where the inputs

are hooked to the 8 address lines of the binary counters. It fires

when the Biomation has read out all 256 channels. The output of

IC10B is fed to the information ready and the computer resumes

operation.
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A similar procedure is followed to read the information from

the memory chips to the computer. The computer executes a 7500

5401 which causes the 5401 A to make a 0 to 1 transition. This is

fed through IC9B and fires the one-shot IC20. This is then fed to

the clear inputs of the counters. The input request is inverted

by IC12A nanded with 5401 A by IC12C. The output of this is then

fed back to the information ready. It also fires the one-shot

IC16. This is nanded through ICllA to fire the one-shot IC17

The purpose of IC16 is to put in a delay before IC17 fires to

advance the counters. Input continues at the maximum rate

possible for the computer.

Integrated Circuits Used

No. Type Description Symbol

6 74s206 256x1 RAM Memory IC1-6

2 54193 4 Bit Counters Ic13-14

2 7437 Buffered Nand IC7-8

5 74121 Monostable Multi- C16-20
vibrators

1 7430 8 Input Nand Gate IC15

1 7404 Hex Inverter IC9

3 7400 Quad 2 Input Nands IC100-12

Note: The 54193 could be a 74193.

External resistors of 10 K are hooked between the

outputs of the memory chips and +5 volts. These are described in

the literature for the 74s206.
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Observations of Ion-Acoustic Cylindrical Solitons

Noah Hershkowitz and Thomas Romesser*
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(Received 24 January 1974)

Cylindrical solitons are seen to evolve from compressive cylindrical pulses in a colli-sionless plasma. The properties of these solitons are found to be consistent with the
known properties of one- and three-dimensional solitons.

Soliton solutions are now well known for at lision with other solitons.
least seven distinct one-dimensional wave sys- All of these properties have recently been veri-tems.' In particular, the soliton solutions of the fied experimentally with collisionless plasmas.Korteweg-de Vries (KdV) equation have been ex- Linear double-plasma (DP) devices were used bytensively studied both theoretically and experi- Ikezi, Taylor, and Baker'2 to verify all but thementally during the last decade and KdV is now second property, and by Hershkowitz, Romesser,known to approximately describe many systems and Montgomery"' to verify the connection withwhich include nonlinear and dispersive effects.' the underlying Schredinger equation [propertyWashimi and Taniuti2 have shown that slightly (2)]. Cohn and MacKenzie' 4 investigated solitonsnonlinear one-dimensional ion acoustic waves in resulting from very large density perturbations
collisionless plasmas with cold ions are described produced by photoionization. A summary of muchby KdV. In a recent Letter, Maxon and Viecelli,3  of the experimental evidence has been given byfollowing the procedure of Ref. 2, have derived a Ikezi."1
modified KdV equation for spherically symmetric In the first work, which considers solitons ofingoing waves. In this Letter we present experi- dimensionality greater than one, Maxon and Vie-mental observations of cylindrical solitons in a celli3 have numerically determined that sphericalcollisionless plasma. solitons have the following four properties. First,

One-dimensional solitons have several distin- an ingoing soliton increases in amplitude whileguishing characteristics.4-" Among them are decreasing in width, thus retaining its identitythe following: (1) Arbitrary positive (compres- as a single soliton. Second, the product of thesive) density perturbations evolve after sufficient square root of the maximum soliton amplitudetime into a superposition of spatially separated multiplied by the width is a constant. Third, asolitons (solitary pulses). (2) The number and small residue develops and moves inward behindimplitude of the solitons is determined by the so- the soliton, taking up a measurable percentageLution of an appropriate time-independent Schr6- of the total momentum; and fourth, the solitonlinger equation with a potential well that is pro- velocity is somewhat greater than the velocity of3ortional to the initial spatial density perturba- a corresponding one-dimensional soliton.ion. One soliton is formed for each bound state In this Letter we present data showing that cyl-vith soliton amplitude proportional to the energy indrical solitonlike objects exist and that theirigenvalues. (3) The soliton velocity is given by properties are consistent with those of one- and
1+.(6n/n)]cs, where 6n/n is the maximum den- three-dimensional solitons. These results are;ity perturbation of each soliton and c, is the ion to our knowledge the first experimental evidenceLcoustic velocity. (4) The spatial widths are pro- for solitons of dimensionality greater than 1.,ortional to (6n/n) -2, which implies that the Experiments were carried out using a cylindri-iroduct of the square root of the maximum soli- cal DP device which had previously been used toon amplitude multiplied by the width is a con- study the ion-ion beam instability of cylindrical
tant. (5) Solitons retain their identity upon col- beams and background plasma.'" Two concentric
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cylindrical plasmas (length 30 cm) are separated ing pulse is seen to be similar to the applied

by two closely spaced, fine-mesh, concentric pulse, but three solitons can be identified in the

cylindrical screens with inner screen diameter outgoing pulse. The traces at other radial posi-

equal to 20 cm. The outer screen is negatively tions indicate how the initial density perturbation

biased to prevent the flow of electrons between evolves into the solitons. The increased velocity

the plasmas, and the inner screen is grounded. of the first two solitons compared to the ion

The ion density was approximately 109 cm-3 and acoustic velocity is evident. Once formed, the
the ion and electron temperatures were approxi- largest soliton is seen to be much narrower than

mately 0.2 and 3 eV, respectively. Positive half-' the applied pulse. We find that the average veloc-

sine-wave pulses are applied to the outer plasma ity of the largest ingoing soliton is approximately

to launch cylindrical density perturbations in the 1.17c,. The application of a negative (rarefac-

inner plasma. tive) density perturbation is not found to evolve

Signals are detected by a positively biased into solitons.
Langmuir probe which has variable radial posi- As in the one-dimensional DP device, the maxi-

tion. No azimuthal dependence was observed, mum applied voltage is limited by the electron

Figure 1(a) shows the perturbed electron number temperature.' 3 For applied voltages larger than

density as a function of time at several radial the electron temperature (here =3 eV), particle

positions for both large and small initial density bursts (pseudowaves) are detected. Data were

perturbations. For the small-amplitude pulse at taken with the largest initial density perturba-

r= 9 cm we can identify an ingoing pulse, which that could be obtained without launching pseudo-

is quite similar to the applied pulse, followed at waves. The width of the applied pulse was then

a later time by a similar outgoing pulse that has varied to determine how the soliton number de-

propagated from the opposite side and through pended on the initial density perturbation (see

the center. As the probe is moved closer to the Fig. 1). This procedure was identical to that fol-

center the ingoing and outgoing pulses approach lowed in our earlier measurements (Ref. 13).
each other, merging at the center. For the large- Figure 1(b) shows how the signal received, r
amplitude compressive pulse at r=9 cm the ingo- =0.5 cm, depends on applied pulse width. Widen-

ing the applied pulse results in increased ampli-

tude, decreased width, and increased velocity in
r= 0.Scm r=6cm the received signal. In the top trace we see one

s9Cm 2.7Lsee well-defined soliton. In the second trace the
first soliton has grown and narrowed and a sec-

,7cm 7.5 psec _ ond soliton is apparent. In the third trace the
first two solitons have grown, narrowed, and

r 5cm II.5ysec speeded up. A third soliton is barely apparent.
-' We find that the square root of the maximum am-

- =3c m .ose plitude multiplied by the width is constant to with-
in 10% for the first four traces. In the fourth

22.o0sec trace the third soliton is seen to grow as well.

5 For further increases in width the solitons no

r .5cm 4.0sec 1 longer have sufficient time to separate from the

(o) (b) , c I initial perturbation. Figure 1(c) shows the sig-
Sl nals corresponding to the same six applied pulse

TIME (20 psec/div) widths as detected at r=6 cm.

FIG. 1. (a) Perturbed electron number density as a For small applied pulse width it is possible to

function of time at several radial positions. Upper launch single solitons whose amplitude depends
traces, linear (6n/n < 1%) ion acoustic pulses (with am- on the applied pulse width. The amplitude of an
plitude adjusted for comparison). Lower traces, non- incoming soliton was found to be approximately
linear pulses propagating, steepening, and breaking in- constant over much of its trajectory as a result
to solitons. (The received signals are digitized and of a competition between damping and geometric
stored on magnetic tape for later analysis. This is the
cause of the observed steplike structure.) (b) Perturbed
electron number density detected at r= 0.5 cm labeled mination of the amplitude dependence of the ve-

by the applied pulse widths. (c) Received signals at r locity. Figure 2 shows the soliton velocities, de-
= 6 cm labeled by applied pulse width. termined from individual soliton trajectories,
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1.12 ! 1 1 tude, width, and velocity are functions of time.
1.1 - The velocity is somewhat greater than the veloci-
.o - ty of a corresponding one-dimensional soliton.

1.09 - Both of these properties of three-dimensional
1.08 - solitons and the first holds for one-dimensional
,.07 - solitons as well.
1.06 - Maxon has recently derived a modified KdV

t.05 - equation for cylindrical solitons.17 Detailed com-
1.04 -parison with numerical solutions of this equation
1.03 will be presented in a later publication. Attempts
1.02 - - will be made to compare the amplitude, width,1.01 and propagation speed as a function of time with
.00oo numerical solutions of a modified KdV equation

0.99 for cylindrical solitons which includes damping
0o. 2 4 6 8 10 when such results become available.

n ) We thank S. Maxon for helpful discussions and
Alfred Scheller for construction of much of theFIG. 2. Velocity of single solitons as a function of apparatus.

the maximum soliton amplitude. apparatus.

versus soliton amplitude. The best least-squares *Work supported in part by the National Aeronautics
fit versus soliton amplitude. The best least-, re a and Space Administration under Grant No. NGL-16-001-fit to these data gives v = [1 +a(6n/n)]c., where a 043.
=1.05+0.20. This is faster than a corresponding 1A. C. Scott, F. Y. F. Chu, and D. W. McLaughlin,
one-dimensional soliton. Proc. IEEE 61, 1443 (1973).

This experiment differs from an idealized one 2H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996
in at least two respects. First, as in one-dimen- (1966).
sional experiments, damping is present. After 3S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4

(1974).accounting for a geometric increase which goes IN. J. Zabusky and M. D. Kruskal, Phys. Rev. Lett.
like (ro/r)"/ 2 , the ion acoustic pulse is seen to 1N.5, 240 (1965).
damp by about a factor of 3 in propagating 9 cm, 5N. J. Zabusky, Phys. Rev. 168, 124 (1968).
and the soliton damps by a factor of 1.5. In the 6C. S. Gardner, J. M. Greene, M. D. Kruskal, and
absence of damping, the geometrical growth fac- R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).
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Ion-Ion Beam Instability in a Cylindrical Geometry

Noah Hershkowitz,* Thomas Romesser,t Georg Knorr,- and Christoph K. Goertz§
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242

(Received 21 January 1974)

The ion-ion instability is studied in a cylindrical double-plasma device. Low frequency
cylindrical standing waves are found which are one-dimensional in character with fre-
quency proportional to beam velocity. An approximate dispersion relation for the cylin-
drical standing waves is derived.

Double-plasma (DP) devices have recently been geometry. The dependence of the frequencies w
used to study the incoherent ion-ion two-beam in- of the instabilities on the beam velocity is shown
stability produced by one-dimensional beams in to be remarkably similar, but not identical, to
unmagnetized plasmas.' -5 This turbulence is the results for a strictly one-dimensional ion-
found to be three-dimensional in character in ion instability.
agreement with the linear theory of the ion-ion The cylindrical DP device, which has recently
instability6 -9 which predicts that the instability been used to study cylindrical solitons," is shown
depends on k'b, where 1k is the plane-wave prop- in Fig. 1. Two concentric argon plasmas are
agation vector and vb is the beam velocity. Al- separated by an outer negatively biased screen
though there is an upper limit on vb beyond which and an inner screen held at ground potential.
the one-dimensional ion-ion instability will not Plasma within the inner cylinder is produced in
grow, there always will be oblique directions for an adjacent connected chamber. Typical operat-
which the projection of ib on k will give growing ing parameters were electron temperature T,
modes in three dimensions. Means et al.'0 have ;1 eV, ion temperature T i ;0.1 to 0.2 eV, aver-recently argued that the observation of turbu- age plasma density ni - 10 to 108 cm -3 , and pres- tr
lence in experiments with one-dimensional elec- sure = 2x 10- Torr. A steady-state radially in- setrostatic ion acoustic shocks depends fundamen- going cylindrical beam is formed by raising the
tally on this three-dimensional property of the plasma potential in the outer cylinder. Beam Az
instability, density ratios -nb/n i are controlled by varying Br

In this Letter we report the production of a the concentric discharges. The ion charge-ex-
coherent ion-ion instability which is essentially change length was greater than the inner-cylin-
one-dimensional in character. This has been ac- der radius. er
complished by generating cylindrical standing Energy distribution functions in the inner plas- ric
waves which are resonant with ingoing and out- ma (region A in Fig. 1) are measured with two diL
going beams in a cylindrical DP device at the energy analyzers with depth-to-area ratios great- in
University of Iowa. This device differs from con- ent
vential DP devices'' in that the cylindrical bound- go
ary of the plasma plays a dominant role. A RADIAL OUTER p
grounded cylindrical screen through which the ANALYZER LANMR SCREEN FILAMENTS
beam in injected, serves as a well-defined bound- L PROBES 1M

ary condition (vanishing potential) for the stand- -m ra
ing waves. In conventional devices'- 5 the dimen- " r
sions were such that wave and particle phenom- 20cm in
ena were not significantly affected by the pres- i ... PUTh
ence of boundaries. The dimensions of those de- tic
vices were large compared to the ion charge-ex- CYLINDRICAL -- ve
change length, the e folding distance for ion- SCREEN S W OF tw
acoustic waves, and all wavelengths of interest. forIn the cylindrical DP device described here the FIG. 1. Cylindrical DP device with two insulated con- dis
diameter of the plasma is comparable to these centric plasmas. The inner plasma is produced in the berlengths. right half of the device. Beam energy is controlled by

varying 4). 4,, filament supply voltage; 4,w filament-A description of these standing waves is de- to-wall voltage; 4f, applied bias voltage. T,=1.0 eV; fac
rived from the Vlasov equation in a cylindrical Tj < 0.2 eV; N0=10-109 cm-3; pressure, 2x10" 4 Torr. sta
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S.2 3 4 I FIG. 3. (a) Power spectra showing the first three
ENERGY (eV) harmonics as a function of beam velocity. (b) Frequen-

cy versus beam velocity for the three lowest harmon-
FIG. 2. Typical radial and azimuthal energy-analyzer ics. No growing modes are observed for vb < o.9x105

traces at 5 and 8 cm are shown. Similar traces are ob- cm/sec and for v>2.2x 10 cm/sec.
served for radii less than cm indicating the prese3. () Power spectr shong the frce
of a ring distribution function in velocity space. The
absence of an azimuthal beam at 8 cm is apparent.
Azimuthal traces are found to be independent of P. Instabilities are detected by positively biased
Broadening of these traces is instrumental. Langmuir probes oriented in the axial direction

and by the energy analyzers. One Langmuir
probe is variable in the radial direction and the

er than 1, whose radial coordinates can be va- other is variable in the < and axial directions.
ried. One energy analyzer measures the energy Langmuir probes indicate that relatively uni-
distribution function of particles with velocities form background plasma and beam densities are
in the radial direction, another observes the achieved in this device. Langmuir-probe mea-
energy in the qp direction. A third measures out- surements within the inner cylinder (region A in
going energy distribution functions in the outer Fig. 1) showed no (p or z dependence (except near
plasma (region B in Fig. 1). Typical energy- the cylinder ends).
analyzer traces are shown in Fig. 2. Near the A comparison of signals simultaneously ob-
inner screen the beam is seen to be radial. For tained at different positions showed that the in-
radii less than 7 cm we find approximately equal stability was in phase throughout the inner plas-
radial and azimuthal beam components, indicat- ma, demonstrating that standing waves were pro-

Sing that the beam forms a ring in velocity space. duced. Therefore it is meaningful to consider
The spatial region over which the ring distribu- power spectra. Typical instability power spec-
tion function exists is determined by the beam tra as a function of beam velocity are shown in
velocity, and the separation and mesh size of the Fig. 3(a). For high beam velocities we observe
two concentric screens. The region increases no instabilitv. The onset of the instability is
for smaller energies. The presence of a ring seen for a beam energy of approximately 1.0 eV.
distribution function rather than a purely radial For beam energies less than approximately 0.2
beam results in a uniform beam density (r< 7 eV the instability disappears. As the plasma po-
cm) with no steady-state electric field. This tential of the outer plasma is made less than the
facilitates a theoretical description of the in- potential of the inside plasma we observe inco-
stability. herent instabilities between the outer cylindrical
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screen and the outer walls of the chamber (re- monies. In addition, the second and third har-
gion B in Fig. 1). monics have approximately 2 and 3 times the fre-Measurements of the power spectra in the ra- quency of the first. This suggests that w/, = av,dial direction show that the three lowest frequen- with a constant, describes all three modes, withcies correspond to resonant modes with no nodes, k,, varying approximately with the mode number.one cylindrical node, and two cylindrical nodes, These results can be understood by consider-respectively, further demonstrating cylindrical ing the linear Vlasov equation in cylindrical geo-standing waves. Figure 3(b) shows that w is metry. The Vlasov equation can be written for
roughly proportional to vb for the first three har- one component (ions or electrons) in the follow-

ing way:

I• r + Y+ +VIPr+ E -vvvr- = 0" (1)at 'ar pra m ) avr ?n av
For a stationary homogeneous equilibrium distribution f,(r, Vr, v,) with E =0, we find vr-y'(v, Ofo/,V- v, afo/aV,)=0. This means that the zeroth-order distribution function depends only on the magnitude
of the velocity, fo =fo(v) =fo[(v,2 +v 1/2]; i.e., the distribution is concentric in velocity space and thebeam must be a ring. Experimentally, we find such a distribution function extending from the center
to within 3 cm of the inner screen for beam energies less than 2 eV.

Perturbing the plasma, we write f(F, =n, )= nof(v) +f1 (F, i, 1), where f,(, 1, t) is given by

f(P, i, t)= f dto VPo f,( ,  - to), to) . fo()/ , (2)
with 4 being the electrostatic potential. The time integral is taken along the straight-line orbits of
the unperturbed state. In evaluating the time integral we consider the plane-propagating waves 4(F, t)=4o0exp[i(ax + by - wl)] = (Poexp{i[kr cos(Op - a) - wt]}. Then the integral in Eq. (2) can be performed togive

f(rv', t)= P(, " kvcos( - oa) af(v)m kvcos(O-a)-w vav " (3)

In writing Eq. (3) and the potential we have used the following definitions:

x=rcosqp, y=rsinyp, v,=vcos8, v,=vsin&, a=kcosa, b=ksina.

When calculating the density from Eq. (3) by integrating over v and 6, we note that the dependence of
cos(0- a) on a can be suppressed because 0 is integrated over all angles. Thus we obtain for the
density

n(F, t) = fov dv f2 d Of = (e/m)nod (f, t)k 2G(w/k, f0 ), (4)
with

G(,fo) =k-2 ,vdv dO cos9 af( )  (k 0 o cos-/ v aov " (5)

In order to express the density in cylinder functions we let D,0 depend on a,. 'o(a)= (?,/r)exp(ivoa
- vn/2), and integrate over a. A change of the variable a to w=A+ p and an appropriate extension of
the limits of the integral to infinity produces the integral representation of the Hankel or Bessel func-
tions Z,(kr)exp(ivrp). Thus we can write

n(r, t)= (e/m)4,Z,(kr) exp(ivvq)G. 
(6)

The densities have to be inserted into Poisson's equation,
- V 2 O= 4 7 , e s n .

(7)
We note that Z,(kr)exp(iv p) is an eigenfunction of the Laplacian. This shows that cylinder functions

are eigenfunctions of the beam-plasma system. For the boundary conditions of the experiment, 4 =0on boundary, we obtain directly v =0, kR = a.0 , where a.o is the th zero of the Bessel function J o().It is important to notice that these are the only nonsingular solutions and they represent standing
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waves. The dispersion relation is found from Eqs. (7), (6), and (5):

D(k,w)=1- FW, G,=1- oyk2 =v  dcsow =0. (8)
1 0~2  kcosf-w v8v

Note that k = ap//R. k is not a plane-wave propagation vector.

We consider now a background plasma with Maxwellian ion and electron distributions with Te>> T,.

In addition we have a radial influx of ions of velocity vb, which can approximately be described by

fb (v)= (nb/2nvb)6 (v - vb). From the Penrose criterion it follows that for small vb the system is stable

as well as for very large vb. Both effects have been observed experimentally [compare Fig. 3(b)].

From the assumed distribution functions we find for very small ion beam density (7 << 1) and for v,

S(k T/mn )1/ 2 C

w =+kv[1 +17 2/3 exp(2ri/3)c4/3(v 2 - ,2)- 2 /3].

For the case of resonance (vb = cs) we find w =+kvl +±r2/5 exp(2i/5)]. The experimental proportional-

ity of w with vb is evident from Fig. 3(b) which corresponds to 7= Q.2.

In conclusion we have shown that low-frequency cylindrical standing waves which depend only on r

are produced by the ion-ion beam instability in a cylindrical DP device. We have shown that their fre-

quency is roughly proportional to the beam velocity. We believe that this is the first time that a coher-

ent ion-ion beam instability has been observed. We ascribe this to the high symmetry of the experi-

ment which substantially reduces the off-axis modes. We have derived a dispersion relation for the

coherent cylindrical-standing-wave instability from the appropriate Vlasov equations for the cylindri-

cal geometry. This predicts unstable standing waves with w/k, proportional to vb rather than travel-

ing waves.
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